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The Runaway Effect in a Lorentz Gas 
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The Lorentz gas of charged particles in a constant and uniform electric field is 
studied. The gas flows through the medium of immobile, randomly distributed 
scatterers. Particles with velocity v suffer collisions with frequency proportional 
to ]vl". For n < 0 runaway of the gas is forced by the field: the mean velocity of 
the flow increases without bounds. By a simple physical argument an integral 
relation is established between the probability of collisionless motion and the 
velocity distribution. It is then shown that when n < - 1 a fraction of particles 
moves as if the scattering centers were absent. The detailed discussion of this 
uncollided runaway is presented. Some qualitative features of the velocity 
distribution are illustrated on rigorous solutions in one dimension. 

KEY WORDS: Lorentz gas; Boltzmann equation; probability density; run- 
away of particles. 

1. I N T R O D U C T I O N  

The description of runaway  electrons in ionized gases under  the action of 
an  applied electric field was first given by Giovanel l i  (1) in 1949. It  can be 
found  nowadays  in monographs  on the kinetic theory of gases. (2) The 

runaway  process results from the lack of ba lance  between the loss of 

electron energy at encounters  with ions and  the gain of energy absorbed 
from the external field. For  sufficiently strong fields the electron gas is 
heated without  bounds  and  acquires large drift velocity, steadily increasing 

in time. This phenomenon ,  known  as electron runaway,  was given an  
exhaustive discussion by Dreicer (3) in the case of fully ionized gases (see 
also Ref. 4). Dreicer remarked the special role played by rapid particles 
whose interact ion with ions is negligibly small. Mot ion  of these particles is 
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practically free from encounters. So they run away in arbitrarily weak 
fields. 

Runaway phenomena for electrons in neutral gases have also been 
studied in detail. Relevant references can be found in a paper by Cavalleri 
and Paveri-Fontana. (5) 

We consider here a simple generalization of the classical Lorentz 
model of the electron gas in metals. (6) The probability density f(r, v, t) for 
finding a particle with velocity v and position r at time t is supposed to 
satisfy a kinetic equation of the form 

Of ( ~t + v �9 ~r + a. ~v )f(r,v, t) = ( -~-~ )~oi, (1.1) 
where 

-~ = [v!"A- (11 v - 1)f(r,v,t) (1.2) 
coil 

The projector l~I, averages f over all directions in velocity space 

~ , f ( r , v , t )  = ~ fda, f(r,v,O (1.3) 

(d~2v is an element of solid angle), a is the acceleration due to a time- 
independent, uniform electric field, and A is a constant. It is thus assumed 
that the mutual interaction between the particles can be neglected, and that 
they are elastically and isotropically scattered in their motion by immobile 
(infinitely heavy) scattering centers. The structure of collision term (1.2) 
implies that the collision frequency (number of collisions per unit time) for 
a particle having the velocity v is equal to [vl"/A. When n = 1, Eq. (1.1) 
becomes the Boltzmann equation studied by Lorentz. (6) The linear growth 
of collision frequency with Iv I corresponds to the hard-sphere interaction. 
For n v ~ 1 the interpretation of the collision term is more subtle. One knows 
that within the framework of classical mechanics the differential cross 
section for elastic scattering in the potential field v(lr[)~lr] -~ is propor- 
tional to [v[-4/~, where v is the initial velocity of the incident particle/v) It 
is only in this sense that the collision term in Eq. (1.1) can be associated 
with the interaction Irl-~, with a related to n by 

1 - 4 / a  = n (1.4) 
One should, however, keep in mind that the actual angle dependence of the 
cross section has been replaced in Eq. (1.1) by that corresponding to the 
hard-sphere scattering (projector II,), which makes this association rather 
loose. It is thus not surprising that for physical applications other collision 
terms have been used. For instance, the case of an ideal Lorentz plasma 
(a = 1,n = - 3 )  has been studied with the use of the Fokker-Planck 



The Runaway Effecl In a Lorentz Gas 47 

expression for the effect of the small-angle Coulomb collisions. (s) However, 
our object here is to analyze the appearance of runaway particles, and from 
this point of view the fundamental role is played by the velocity depen- 
dence of the collision frequency, which enters correctly into Eq. (1.1). 

Let us define the meaning of the runaway effect in the Lorentz gas in a 
precise way. We shall say that runaway occurs if the mean particle velocity 

(v>t = f dv f(v, t)v (1.5) 

grows without bounds when t ~ ~ .  
Suppose that a particle has velocity v o at time t = 0. Let P(t;Vo,n ) 

denote the probability of finding it with velocity v = Vo + at at time t. If 

lim e(t;Vo, n) = P(oo;v0,n)  > 0 (1.6) 
l - - )  cO 

a fraction P(or v0, n) of particles, having initially the velocity v0, moves 
with acceleration a as if the scattering centers were absent. The presence of 
these "uncollided" particles is a sufficient condition for runaway. It is, 
however, by no means a necessary one. The unlimited growth of (v)t can 
occur even when P(oo; vo, n ) = 0. Indeed, it follows from our previous 
work (9) (in collaboration with E. Wajnryb) that 

P(or v0, n) = 0 for n > - I  (1.7) 

In this case the mean velocity follows the power law 

(v>tt~o~ a t -  "/(" +2) (1.8) 

and thus increases indefinitely for - 1 < n < 0 [Eq. (1.8) is a direct conse- 
quence of Eq. (60) of Ref. 9]. We conclude that particles run away in our 
model when n < 0. 

It is interesting to remark that the presence (or absence) of uncollided 
particles is closely related with symmetry properties of the velocity distribu- 
tion in the long-time regime. It has been demonstrated in Ref. 9 that the 
dominant term in the long-time expansion of the velocity distribution has 
the spherical symmetry, provided n > - 1. In other words, the collisions are 
efficient enough to make f(v, t) asymptotically isotropic despite the pres- 
ence of the field. This statement holds in any dimension of velocity space. 
We illustrate it in Section 2, where the rigorous solution of the one- 
dimensional version of Eq. (1.1) for n = 0 is presented. In this sense the 
whole velocity distribution is collision-dominated even for n < 0, provided 
n >  - 1 .  

The method of the long-time asymptotic expansion used in Ref. 9 
breaks down when n < - 1 .  One can expect that for collision frequencies 
decreasing sufficiently rapidly with growing velocities the influence of the 
field on fast particles can introduce an anisotropy persisting even for 
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t ~ ~ .  This phenomenon will be shown to occur for n --- - 1 in Section 3. 
When n < - 1 a new qualitative change appears: condition (1.6) is satisfied 
for particles with nonzero initial velocities. The appearance of uncollided 
runaway particles is discussed in detail in Section 4, where an integral 
relation is established between the probability P( t ;  v0, n) and the solution of 
the initial value problem f(v, t = 0) = 8(v - v0) [see Eq. (4.6)]. This relation 
is crucial for the rest of the paper. When combined with Eq. (1.1) it yields a 
rigorous expression for P(t; v0,n ), which agrees with that used in Ref. 5. 
The paper ends with a number of comments, including the discussion of the 
special case n = - 2 ,  and of the applicability of the conclusions derived for 
the Lorentz gas to more realistic systems. 

. EXAMPLE OF ASYMPTOTIC SYMMETRY: RIGOROUS 
SOLUTION FOR n = OIN ONE DIMENSION 

The one-dimensional version of Eq. (1.1) for the velocity distribution 

= -Ivl"A- ~fa(v, t) (2.1) 

fa (V, t) = I [ f(v, t )  - f (  - v, t )  ] (2.2) 

and Ivl denotes the modulus of v (velocity has now two possible directions). 
The symmetric part of f is defined by 

f~ = f _ fa (2.3) 

In order to solve the initial value problem 

f (v,O) = 6 ( v -  Vo) (2.4) 

we use the Laplace transform 

f ( v , z ) = f o ~ d t e - Z t f ( v , t  ), Rez > 0  (2.5) 

and rewrite Eq. (2.1) as 

(~ + a ~ ) f (v,z) + l , l "A- ~~ = ~(, - ,o) (2.6) 

Equation (2.6) is equivalent to the system of equations 

1 zis(v ,z)  + a ~-~ ia (v , z )  = -~ [t~(l~ -- l~O) + 8(t~ + VO) ] (2.7a) 

1 (z + lvl"A-1)fa(v,z) + a ~ f~(v,z) = -~ [ 8(V - Vo) - 8(V + Vo) ] (2.7b) 

f (v ,  t) has the form 

(-~ +a ~-~ )f(v,t) 
where 
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which lead to the second-order equation for the antisymmetric part of f 

~1) 2 a 2 ( Z2 --[- z l v l n A  - 

- 

Aa 2 
(2.8) 

Equation (2.8) is particularly simple when the collision frequency is con- 
stant (n = 0). This happens for the Ir1-4 (Maxwell) interaction and has been 
widely exploited in kinetic theory (see, e.g., Ref. 2, p. 173). The general 
solution of the associated homogeneous equation in this case is a linear 
combination of functions exp(_+ vo), where 

o = (1/a)(z  2 + z / A )  ~/2 (2.9) 

For v > O, v 0 :~ O, the physically relevant solutionf(v,z I%) must satisfy the 
conditions 

lim fa (v, z [ %) = lim fa (v, z [ v0) = 0 (2.10) 
v--> oo v ~0 

and consequently have the form 

fa(v,  z I%) = c,o(Ivol  - v) sh(~o) + c 2 o ( v  - I%1) e x p ( -  vo) (2.11) 

where 0 denotes the Heaviside step function 

= [ 1 for x > 0 O(x) (2.12) / 0 for x < O  

Inserting formula (2.11) into Eq. (2.8) and using the relation 

O(x - Xo) = 8(x - Xo) (2.13) 
Ox 

we get a system of linear equations for the coefficients C~, C 2. Solving it, we 
find 

f a ( v ' z l v ~  -~a { o(Iv~ - v ) [  ~ sgnv 0 - 1]e-Olv~ 

+ O(v -]Vo[)[ch(voo ) + Z__ao sh(v~176 e-~ ) (2.14) 

Equation (2.14), valid for v > 0, suffices to find the function fa(v, z lv0) for 
any value of velocity because of its antisymmetry. Using then Eq. (2.7a), we 
get the symmetric part fS(v, Z[Vo). The formula for the Laplace transform 
of the complete distribution then follows and we get 

f(v, zl%) -- w(v,z Ivo) + w(-v0,z  I - v )  (2.15) 
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where 

[o is given by Eq. (2.9)]. 
It turns out that the calculation of the inverse Laplace transform off  is 

possible in a closed form due to the relation (l~ 

1 e x p [  _ f l ( z  2 - Ot2)l/2] 
(z 2 _ a2)1/2 

(2.16) 

= s176 e-*tO( t - fl ) lo(a(  t2 - fl2) l/2), f l > 0  

The standard notation I~ for the modified Bessel functions has been used 
here (see Ref. 10, p. 371). Rather lengthy calculations lead eventually to the 
following result: 

f(v, tlVo) =(exp d)[8(at + v o -  v) 

+ O(at - I v -  v o a t -  v + v o 

x -27s 

+ O(at - iv + v~176 [ a2t2 - (v + v~ l/2) 

(2.17) 

From Eq. (2.17) we readily deduce that 

P(t;  v0, 0) = e x p ( -  t /2A)  (2.18) 

Hence the probability of collisionless motion vanishes exponentially. The 
characteristic time ~- = 2A has the meaning of mean free time. The peculiar 
character of the Ir1-4 interaction shows up in that P(t;vo,O ) depends 
neither on the field nor on the initial velocity v o. 

Using the asymptotic formulas 

Ii(x),  Io(X)x~ ,eX/ (2qrx) ' /2  (2.19) 
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we deduce that in the long-time limit [t >> 2A, t >> [(v _ Vo)/a[] the proba- 
bitity density f (v ,  t I%) takes the form 

1 exp -- - fAS(v, t 1%) - 4a(TrAt) ,/z 4s 
+ 

( v+vo,2)l 
exp 4Aa2 t 

(2.20) 

Putting v o - -0  (or assuming that v >> v0), we get a simple diffusion law, 
recovering the result of Ref. 9. The fgs  is a symmetric function of velocity. 

According to the introductory discussion of Section 1, the case n = 0 
separates the region in which limt~oo(v)t = 0 (no runaway) from that 
where limt~oo(v)t -- oe (runaway occurs). It is thus interesting to calculate 
the mean velocity for n = 0. Using formula (2.17), we evaluate the integral 
(1.5), obtaining 

(D)t = Aa + (v o - Aa)e - ' / a  (2.2!) 

The asymptotic drift velocity is here constant. An analogous result also 
holds in higher dimensions, where one simply finds limt_,~(v)t = Aa [see 
Ref. 9, Eq. (60)]. 

3.  A P P E A R A N C E  O F  A S Y M M E T R Y :  n = - - !  

In this section we show that when the collision frequency is propor- 
tional to Iv[- 1 the applied field introduces an anisotropy which persists in 
the long-time limit. In order to deal with an explicit and simple solution we 
shall again restrict our considerations to the one-dimensional case. It is 
worth mentioning that a number of important physical characteristics of 
the Lorentz gas do not depend on dimension. For instance, exponents of 
the asymptotic power laws followed by the moments of the velocity 
distribution have such a property (see Ref. 9). In order to even further 
simplify the problem, we shall study the case of particles which are initially 
at rest, 

f(v,O) = 6(v) (3.1) 

of the Laplace transform f (v ,  z) then satisfies the The antisymmetric part 
equation 

- + f~(v, z ) =  d 6 ( v )  (3.2) 

obtained from Eq. (2.8) by putting n = 1, v 0 -- 0. Introducing the complex 
variable x = 2vz /a ,  we find that in the region v > 0 the associated homo- 
geneous equation takes the form of the normalized Whittaker equation (see 
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Ref. I1, p. 1059) 

d 2 1 + X + W(x) = 0 (3.3) 
dx 2 4 x -x -~ 

with /z = 1/2, ~ = -1 /2aA.  The integrability condition here chooses the 
Whittaker function Wx,1/2(x), so that 

fa(v,z 10) = C W  ,/2aA,!/2(2vz/a) for v > 0 (3.4) 

Equation (3.2) requires thatfa(v, z lO) have a finite jump at v = 0 

lim fa(v,z 10) = 1/2a (3.5) 
v'~0 

Condition (3.5) combined with the formula 

W_,/2aA.l/2(0) = 1/F(1 + 1 / 2 a a )  (3.6) 

fixes the constant C in Eq. (3.4). The relation 

1)e-Xt [ 2 t - 1  ] - x / F ( l _ ~ )  (3.7) - c (  x -  IwR, I/2(X) 

allows us to calculate the inverse Laplace transform of fa, and we find 

fa(vltlO)= -~aO(at- lvl)sgnv -~t [ a t -  lvl ] 1/2aA 
at T I vl (3.8) 

Inserting this result into Eq. (2.1) with n = 0, we readily deduce the form of 
the complete distribution 

f(v, tlO) = O(at- ,v , )  1 [ a t - I v '  jl/(2aA) 
2aA a t -  v at + Iv[ (3.9) 

It can be checked that in the sense of distributions 

lim f(v,  t] 0) = 8(v) (3.10) 
t~0  

Denoting by P§ and P_ the probabilities of finding a particle with 
positive and negative velocity, respectively, we find 

p + _  12aAJ0ldu [ 1 (3.11) 
t" 1 1 - u 1/(2,,A) 

- ~ + u  

The obvious inequality P+ > P_ reflects the asymmetry imposed by the 
electric field (probabilities P+,  P_ do not depend on time). 

Let us remark that the density f(v, t l0) has the homogeneity property 

f(av, atlO ) = a-~/ (v , t  10), a > 0 (3.12) 

It follows that kth moment of f is proportional to t k. In particular, the 
mean velocity grows linearly with time. However, it would be erroneous to 
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infer that a fraction of particles moves with a constant acceleration. Indeed, 
there is no term in Eq. (3.9) proportional to 8(at  - v), so that the probabil- 
ity of collisionless motion is zero at any time! This peculiar behavior is due 
to the [v[- 1 divergence of the collision frequency for v--) 0. As we shall see 
in the next section, the situation is quite different for particles with nonzero 
initial velocities. However, in all cases the probability of a motion without 
collisions vanishes as t ~ oo ; the uncollided runaway effect is absent. 

4. R U N A W A Y  W I T H O U T  C O L L I S I O N S :  n < --1 

In this section we derive the formula for the probability P(t;Vo, n ) 
without restrictions on the dimension of the space. We then show that when 
n < - 1 uncollided runaway takes place. 

Our considerations will be based on the kinetic equation 

Due to energy conservation, a knowledge of its solution suffices to deduce 
the complete distribution f(r,v, t) satisfying Eq. (I.I), provided the initial 
position space inhomogeneity occurs only in the direction of the field (see 
Ref. 9). Let us denote by f(v, t l v0) the probability density satisfying Eq. 
(4.1) and the initial condition 

f(v, O lvo) = 8(v - v0) (4.2) 

If the probability of collisionless motion during time interval t is P(t;  v 0, n), 
the density f(v, t I v0) contains a contribution of the form 

P(t ;  Vo,n) ~(at + v o - v) (4.3) 

On the other hand, the rate at which particles suffer first collisions at a 
given moment T, 0 < T < t, is given by 

O p(T; v0,n ) (4.4) 
0T 

The particle velocity after the first collision has modulus [aT + v0i and an 
arbitrary direction u, In] = 1. It follows that the contribution to f(v, t Iv0) 
from particles colliding first at time T has the form 

+ V01)aT (4.5) 

This allows us to relate P(t;  Vo, n) to f(v, t I v0) by the integral equation 

/ ( v ,  t l Vo) = e(t; Vo,")  (at + Vo - v) 

- f0 tdT[ ~ P(T; v0,n ) ] I I ,  f(v, t -  T ] uia+ + v0] ) (4.6) 
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Equation (4.6) will be the basis for the subsequent analysis. Inserting it into 
Eq. (4.1) and using the relations 

f (v ,01 uiat + vol) -- ~(v - u { a t  + Vo{ ) ( 4 . 7 )  
A A 

Yl.~(uiat + Vol - v) - -  YIv6(at + v 0 - v )  

we obtain a simple equation satisfied by P(t; v o, n) 

[ ~t + ]at + v~ (4.8) 

The physically relevant solution must satisfy the conditions 

0 < P(t;vo, n ) ~< 1, P(0;v0,n ) = 1 (4.9) 

Note that in one dimension, particles which collide first at time ~- are 
known to have velocity - ( aT  + %) after collision, so that Eq. (4.6) should 
be written in this case as 

f(v, tlVo) = e(t;vo, n)8(at + Vo- v) 

-fotd'r[-~TP('r;vo, n ) ] f ( v , t - ' r [ - a r - v o )  (4.10) 

In higher dimensions the distribution of velocity directions is continuous 
and the unphysical event of a particle having an unchanged direction of 
motion after collision is included (with weight zero) in Eq. (4.6). Equation 
(4.8) has, however, the same form in any dimension. 

Suppose that the solution of Eq. (4.8), satisfying conditions (4.9) is 
inserted into Eq. (4.6). A n  integral equation for f(v, t I v0) is then obtained 
replacing the initial value problem represented by Eqs. (4.1), (4.2). Both 
formulations are equivalentfl 

To begin with, let us suppose that there is no external field (a = 0)i In 
this case a simple exponential decay is obtained, 

e(t; v 0, n) = exp( - Iv0{"t/2A) (4.11) 

with characteristic decay time % = 2AIv0{ -~. Although for n < 0, r 0 ~  
when Iv01 runaway without collisions is impossible, as for any given n 
and v 0, l imt_~P(t;  v 0, n) = 0. 

The situation changes qualitatively when the field is applied to the 
system. We shall discuss here a number of representative simple cases 
which suffice to give an overall understanding of the behavior of the gas. 

2 The method of passing to an integral representation of the Boltzmann equation is associated 
with the name of Chambers(~2) in the semiclassical theory of electron motion in metals and 
semiconductors. We are grateful to Prof. H. L. Frisch for having drawn our attention to this 
point. 
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(i) When n = 0 we find (in any dimension) 

e ( t ;  v0 , , )  = e x p ( -  t / 2 A )  (4.12) 

in agreement with the rigorous solution of Section 2. 
(ii) Suppose that the initial velocity is directed opposite to the electric 

field 

v0 = -alVo[/lal (4.13) 

Equation (4.8) takes the form 

For n =~ - 1 we find 

P(t; v o, n) -- { O(n + 1)0(]alt - IVol)exp[ - (lair - [Vo[) "+ ] /2laia(n + 1)] 

+ O(Ivo[ - lair) exp[ - ([Vo[ - [alt)"+'/2]ala(n + 1)]) 

• exp[ -[Vo["+]/2[a[A(n + 1)] (4.15) 

whereas when n = - 1 the solution reads 

[ ]a, t]  ]/2'''A 
P(t; v0, n ) = 0(Iv01- ]alt) 1 - ~ (4.16) 

In all cases limt~ooP(t; v 0, n) = 0, which means that particles with velocities 
opposite to the field cannot run away without collisions. The factor 
O(n + 1) in the first term on the right-hand side of Eq. (4.15) is to be noted. 
It implies that when n < - 1 (the situation where uncollided runaway is 
expected to occur) the probability of unperturbed motion vanishes after a 
finite t ime Iv01/Ia[. This is so because the probability of suffering a collision 
increases for slow particles rapidly enough to rule out the possibility of 
being stopped by the field before a collision takes place. The same holds for 
n = - 1 [see Eq. (4.16)]. 

(iii) Let us now investigate the opposite situation, supposing that 
particles have an initial velocity oriented along the field 

�9 o = al~ol/lal ( 4 . 1 7 )  

Solving Eq. (4.8) yields 

t~ [alt - I / 2 l a l A  (1 + ~o1 ) for n = - I  

e(t;Vo,  n) = (4.18) 
( ]v0ln+l -- ([alt + [Vo') "+' ) 

exp 2~[A~(n ~- ~) for n 4= - 1 
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The fundamental observation about Eq. (4.18) is that whereas for n >/ - 1, 
l im t~P( t ;  v0, n) = 0, in the case of n = - 1 - e, e > 0, we find 

lim P(t; v 0, - 1 - e) = exp{ - 1/2Alalelv0[' } (4.19) 

Equation (4.19) defines the fraction of particles with initial velocity (4.17) 
which run away without collisions despite the presence of scattering cen- 
ters. This fraction vanishes for Iv0[ ~ 0, and tends to 1 when I%1 ~ ce. The 
appearance of uncollided runaway for n < -  1 is in agreement with a 
general criterion for this phenomenon discussed in Ref. 5. 

(iv) We close the considerations of this section by studying the case of 
particles moving initially in the direction perpendicular to the field 

v 0 �9 a = 0 (4.20) 

Equation (4.20) implies the equality 

lat + v0] n = (]al2t 2 + Iv012) ~ (4.21) 

so that the solution of Eq. (4.8) takes the form 

( P(t; v0,n ) = expk - 

The calculation of the long-time limit yields 

lirn P(t;vo, n ) -- exp -~/-~-F(~)/4Ala]lv01~F( (4.23) 

L for n = - l - e ,  e > 0  

We thus find again uncollided runaway for n < - 1. However, the fraction 
of particles which escape without collisions is smaller in the case of v 0 
perpendicular to a compared to the situation where v 0 is parallel to a. This 
immediate consequence of Eqs. (4.19), (4.23) is intuitively clear. Particles 
moving in the direction of the field have the greatest chance of reaching 
rapidly the large-velocity region where the collision frequency is negligibly 
small. 

5. DISCUSSION 

We considered here charged particles flowing under the action of an 
electric field through a scattering medium. Particles with velocity v suffered 
collisions with frequency proportional to Iv[ n. No mechanisms of energy 
transfer between the gas and scattering centers was present. Our results 
combined with those obtained in Ref. 9 yield a rather complete picture of 
qualitative changes in the behavior of the system when the exponent n is 
varied. 
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For n > 0 t h e m e a n  velocity of the gas vanishes in the long-time limit: 
the runaway phenomenon does not occur. The effect of the field shows up, 
however, in the unlimited growth of the kinetic energy ~ t  2/(n+2) . This 
long-time behavior, established for n > -  1 in Ref. 9, reflects the most 
unsatisfactory feature of the Lorentz model studied here. The gas is heated 
indefinitely by the field because of the lack of energy losses at encounters 
with immobile scatterers. For no value of n does there exist a stationary 
regime with finite thermal energy density. 

When n = 0 the gas starts moving as a whole: its mean velocity attains 
exponentially a constant nonzero value. For collision frequencies tending 
to zero in the large-velocity limit (n < 0) a new phenomenon, called 
runaway, arises: the applied field increases the mean velocity of flowing 
particles without bounds. For n not too small ( -  1 < n < 0) this growth of 
velocity is governed by the power law t -n/(n+2). Collisions remain impor- 
tant in the sense that the dominant term in the long-time expansion of the 
velocity distribution shows spherical symmetry. 

For n = - 1 linear growth of the mean gas velocity is attained and the 
field forces an anisotropy in the velocity distribution that persists for 
arbitrary times. 

Finally, a spectacular effect appears when the collision frequency 
decreases faster than Ivl-1 for Ivl ~ ~ .  A finite fraction of particles then 
moves without collisions, freely accelerated by the field. The occurrence of 
such uncollided runaway for n < - 1 was predicted in Ref. 5. 

The long-time expansion of Ref. 9 [see Eq. (59)] seems also to assign a 
special character to the case n = - 2 .  We found that in one dimension the 
singularity ]V1-2 of the collision frequency at v = 0 excludes the existence 
of a solution to the initial value problem f(v, t = 0) = d(v). In order to see 
this, note that the homogeneous equation associated with Eq. (2.8) takes the 
form of Whittaker equation (3.3) with ?t = 0, lu = (1 + 4z/Aa2)l/2/2 when 
n = - 2 ,  v > 0. It is then readily checked that the behavior 

Wo,t~(2vz / a) v,.~oV('/2)-~ (5.1) 

is incompatible with condition (3.5). In this sense one could say that for 
n = - 2  (and probably for n < - 2 )  collisions exclude the possibility of zero 
velocity. 

Before closing, let us consider the possible applicability of conclusions 
derived for the Lorentz gas to more realistic systems. In Section 1 we 
indicated that the collision frequency ~[v]" corresponds to scattering in the 
potential field ~ l r l -4 / (~-" ) :  Hence runaway should occur for potentials 
decreasing more slowly than Irl-4 at large distances (n < 0). This includes 
of course the Coulomb case. We think that this conclusion might be valid 
for more realistic models. The fact that we used the hard-sphere angle 
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dependence of the cross section does not seem to be very important from 
this point of view. For instance, it is clear that the argument presented in 
Section 4 to calculate the probability of collisionless motion does not 

A 

depend on the fact that the projector II v assigns equal weight to all 
directions. The unphysical character of the Lorentz model corresponds 
rather to the lack of energy transfer between flowing particles and the 
scattering medium. No thermalization of the gas is possible in these 
conditions. This makes the situation quite different from that considered in 
plasma physics, where a critical field is required to accelerate effectively the 
electrons despite their losses of energy at encounters with the ions (see, e.g., 
Ref. 3). Let us also remark that the notion of uncollided runaway is an 
idealization of what could happen in a realistic system with n < -  1. 
Indeed, particles moving through a medium exerting long-range forces on 
them are permanently influenced by scatterers. So the probability of 
collisionless motion is strictly speaking zero at any time. 

We stressed in our analysis that the growing influence of the field for 
decreasing n shows up for n = -  1 in the breaking of the asymptotic 
spherical symmetry of the velocity distribution. Of course, in a realistic 
description of scattering the collision-dominated shape of the velocity 
distribution should correspond to the actual angular dependence of the 
cross section. The spherical symmetry obtained in our considerations for 
n > - 1 was due to the assumed hard-sphere isotropic scattering. However, 
the fact that at n = - 1  the field introduces its own anisotropy into the 
velocity distribution may remain true in a more realistic description of the 
flow of the gas. 
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